50 research outputs found

    Molecular genetics of variegate porphyria in Finland

    Get PDF

    TAFFEL: Independent Enrichment Analysis of gene sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A major challenge in genomic research is identifying significant biological processes and generating new hypotheses from large gene sets. Gene sets often consist of multiple separate biological pathways, controlled by distinct regulatory mechanisms. Many of these pathways and the associated regulatory mechanisms might be obscured by a large number of other significant processes and thus not identified as significant by standard gene set enrichment analysis tools.</p> <p>Results</p> <p>We present a novel method called Independent Enrichment Analysis (IEA) and software TAFFEL that eases the task by clustering genes to subgroups using Gene Ontology categories and transcription regulators. IEA indicates transcriptional regulators putatively controlling biological functions in studied condition.</p> <p>Conclusions</p> <p>We demonstrate that the developed method and TAFFEL tool give new insight to the analysis of differentially expressed genes and can generate novel hypotheses. Our comparison to other popular methods showed that the IEA method implemented in TAFFEL can find important biological phenomena, which are not reported by other methods.</p

    Incidence and risk factors of spinal cord stimulation for persistent or recurrent pain after lumbar spine surgery : a population-based study

    Get PDF
    Purpose This study aims to elucidate the incidence of and independent risk factors for spinal cord stimulator implantations for patients who underwent lumbar spine surgery. Methods The PERFormance, Effectiveness, and Cost of Treatment (PERFECT) episodes database, which was established for selected diseases and procedures in Finland, includes all patients who underwent lumbar spine surgery for degenerative spine conditions or spinal cord stimulation (SCS) in Finland from 1986 to 2018. The data on age, sex, hospital diagnoses, surgical procedures, and causes of death were imported from the Finnish national registers into the PERFECT database. Results Between 1986 and 2018, 157,824 patients had their first lumbar spine procedure and for 1769 (1.1%) of them, a subsequent SCS procedure was observed during the follow-up. The cumulative incidence of SCS for persistent or recurrent pain after lumbar disk herniation, spinal stenosis, degenerative disk disease, and spondylolysis and spondylolisthesis surgery at 15 years was 1.2%, 1.0%, 2.7%, and 2.6% respectively. At 15 years, the cumulative incidence of SCS for persistent or recurrent pain after lumbar spine surgery after five or more lumbar spinal operations was 11.9%. Conclusion Repeated surgery was the most prominent significant risk factor for SCS for persistent or recurrent pain after lumbar spine surgery. The risk of SCS for persistent or recurrent pain after lumbar spine surgery increases significantly along with the number of lumbar spine procedures. When considering repeated lumbar spine surgery, careful evaluation of treatment options should take place to ensure good patient outcomes.Peer reviewe

    Association of Intracranial Aneurysms With Aortic Aneurysms in 125 Patients With Fusiform and 4253 Patients With Saccular Intracranial Aneurysms and Their Family Members and Population Controls

    Get PDF
    Background-Varying degrees of co-occurrence of intracranial aneurysms (IA) and aortic aneurysms (AA) have been reported. We sought to compare the risk for AA in fusiform intracranial aneurysms (fIA) and saccular intracranial aneurysms (sIA) disease and evaluate possible genetic connection between the fIA disease and AAs. Additionally, the characteristics and aneurysms of the fIA and sIA patients were compared. Methods and Results-The Kuopio Intracranial Aneurysm Database includes all 4253 sIA and 125 fIA patients from its Eastern Finnish catchment population, and 13 009 matched population controls and 18 455 first-degree relatives to the IA patients were identified, and the Finnish national registers were used to identify the individuals with AA. A total of 33 fIA patients were studied using an exomic gene panel of 37 genes associated with AAs. Seventeen (14.4%) fIA patients and 48 (1.2%) sIA patients had a diagnosis of AA. Both fIA and sIA patients had AAs significantly more often than their controls (1.2% and 0.5%) or relatives (0.9% and 0.3%). In a competing risks Cox regression model, the presence of fIA was the strongest risk factor for AA (subdistribution hazard ratio 7.6, 95% CI 3.9-14.9, P Conclusions-The prevalence of AAs is increased slightly in sIA patients and significantly in fIA patients. fIA patients are older and have more comorbid diseases than sIA patients but this alone does not explain their clinically significant AA risk.Peer reviewe

    Intracranial Aneurysm Classifier Using Phenotypic Factors: An International Pooled Analysis

    Get PDF
    Intracranial aneurysms (IAs) are usually asymptomatic with a low risk of rupture, but consequences of aneurysmal subarachnoid hemorrhage (aSAH) are severe. Identifying IAs at risk of rupture has important clinical and socio-economic consequences. The goal of this study was to assess the effect of patient and IA characteristics on the likelihood of IA being diagnosed incidentally versus ruptured. Patients were recruited at 21 international centers. Seven phenotypic patient characteristics and three IA characteristics were recorded. The analyzed cohort included 7992 patients. Multivariate analysis demonstrated that: (1) IA location is the strongest factor associated with IA rupture status at diagnosis; (2) Risk factor awareness (hypertension, smoking) increases the likelihood of being diagnosed with unruptured IA; (3) Patients with ruptured IAs in high-risk locations tend to be older, and their IAs are smaller; (4) Smokers with ruptured IAs tend to be younger, and their IAs are larger; (5) Female patients with ruptured IAs tend to be older, and their IAs are smaller; (6) IA size and age at rupture correlate. The assessment of associations regarding patient and IA characteristics with IA rupture allows us to refine IA disease models and provide data to develop risk instruments for clinicians to support personalized decision-making

    Shared Genetic Risk Factors of Intracranial, Abdominal, and Thoracic Aneurysms

    Get PDF
    Background-Intracranial aneurysms (IAs), abdominal aortic aneurysms (AAAs), and thoracic aortic aneurysms (TAAs) all have a familial predisposition. Given that aneurysm types are known to co-occur, we hypothesized that there may be shared genetic risk factors for IAs, AAAs, and TAAs. Methods and Results-We performed a mega-analysis of 1000 Genomes Project-imputed genome-wide association study (GWAS) data of 4 previously published aneurysm cohorts: 2 IA cohorts (in total 1516 cases, 4305 controls), 1 AAA cohort (818 cases, 3004 controls), and 1 TAA cohort (760 cases, 2212 controls), and observed associations of 4 known IA, AAA, and/or TAA risk loci (9p21, 18q11, 15q21, and 2q33) with consistent effect directions in all 4 cohorts. We calculated polygenic scores based on IA-, AAA-, and TAA-associated SNPs and tested these scores for association to case-control status in the other aneurysm cohorts; this revealed no shared polygenic effects. Similarly, linkage disequilibrium-score regression analyses did not show significant correlations between any pair of aneurysm subtypes. Last, we evaluated the evidence for 14 previously published aneurysm risk single-nucleotide polymorphisms through collaboration in extended aneurysm cohorts, with a total of 6548 cases and 16 843 controls (IA) and 4391 cases and 37 904 controls (AAA), and found nominally significant associations for IA risk locus 18q11 near RBBP8 to AAA (odds ratio [OR]= 1.11; P=4.1 x 10(-5)) and for TAA risk locus 15q21 near FBN1 to AAA (OR=1.07; P=1.1 x 10(-3)). Conclusions-Although there was no evidence for polygenic overlap between IAs, AAAs, and TAAs, we found nominally significant effects of two established risk loci for IAs and TAAs in AAAs. These two loci will require further replication.Peer reviewe
    corecore